
Open Policy Agent

Michiel Kalkman - DigIO

Let’s build an API

Requirement 1 : Orders are accessible via an API

Design time!

Controller v1 : Get the orders

getOrders(request, response, ctxt) => {
let orders = ctx.database.findAll('order');
response.status = 200;
response.body = orders;
return [request, response];

}

Requirement 16 : A valid session is required to access the API

Controller v2 : Check that the session is valid

getOrders(request, response, ctxt) => {
if (!request.tokenisValid) {

response.status = 401;
response.body = 'Unauthenticated';

} else {
let orders = ctx.database.findAll('order');
response.status = 200;
response.body = orders;

}
return [request, response];

}

Requirement 31 : Only premium users can access Orders

Controller v3 : You need the premium role

getOrders(request, response, ctxt) => {
if (!request.token.isValid) {

response.status = 401;
response.body = 'Unauthenticated';

} else if (request.roles.includes('premium')) {
response.status = 403;
response.body = 'Unauthorized';

} else {
let orders = ctx.database.findAll('order');
response.status = 200;
response.body = orders;

}
return [request, response];

}

Requirements analysis

I How is premium defined? Is it a role?
I Is that role required to interact with orders?

I Does creating an order make the creator the owner?
I Is there a difference between owner and creator?

I Can users see orders that they have created themselves?
I Can users see orders that they are the owner of?
I Can orders be changed?

I Are there restrictions? (E.g. changing a fulfilled order)
I Can users create orders for other users?

I If so, are there restrictions? (E.g. within groups or hierarchies)

Controller v4 : Users can only see their own orders

getOrders(request, response, ctxt) => {
// auth session + roles
let orders = ctx.database.findAll('order', {

filter : [
{ creatorId: request.session.userId },
{ ownerId: request.session.userId },

] // implicit OR?
});
response.status = 200;
response.body = orders;
return [request, response];

}

Controller v5 : Admins see everything

getOrders(request, response, ctxt) => {
// auth session + roles
if (!request.roles.includes('admin')) {

let orders = ctx.database.findAll('order', {
filter : [

{ creatorId: request.session.userId },
{ ownerId: request.session.userId },

] // implicit OR?
});

} else {
let orders = ctx.database.findAll('order', { });

}
// response

}

Controller v6 : Add audit trail
getOrders(request, response, ctxt) => {

// auth session + roles
const userId = request.session.userId;
if (!request.roles.includes('admin')) {

logger.info(`getOrders: user:${userId}`);
let orders = ctx.database.findAll('order', {

filter : [
{ creatorId: userId }, { ownerId: userId },

] // implicit OR?
});

} else {
// TOFIX: Admins need the premium role to get here
logger.info(`getOrders: user:${userId} as admin`);
let orders = ctx.database.findAll('order', { });

}
// response

}

Oops

Figure 1: How did we get here?

Breakdown

Function Concern

Check user is authenticated Authentication
Check user is authorized Authorization
Check user if user is an admin Authorization
Check user for premium role Authorization
Generate audit logs Auditing
Create user filter restrictions Confidentiality
Execute query API
Return results API

Casual observations

In this simplified example,

I 75% of code is unrelated to the actual API function
I This will be similar for other functions (verbs)
I 26 LoC per function * 4 verbs = 104 Loc per Resource
I Say 10 Resources for the project = 1040 lines of Resource code
I Industry average 15 to 50 errors per 1000 delivered LoC

I From Code Complete, Microsoft Press

Why is everything on fire?

75% of code is unrelated

I Wasted effort
I Lost opportunity
I Testing overhead

I Complexity doesn’t increase linearly
I Subject to change

I Any change is more complex than necessary
I Still has to be maintained

I Any maintenance is more complex than necessary
I 300% more bugs than necessary

I Fixes, maintenance, testing costs, etc
I Technical debt with no up side

I Compound interest on that debt

Definition

policy (noun) a set of ideas or a plan of what to do in particular
situations that has been agreed to officially by a group of people, a
business organization, a government, or a political party

Information security policy decomposition

CIA Triad
I Confidentiality the protection of data from unauthorized disclosure
I Integrity the protection of data from unauthorized alteration
I Availability the protection from disruption of authorized access

The Triple A’s

I Authentication the identification of a user
I Authorization controlling the subject-object-activity model
I Auditing ensure controls are operational and effective

Where are we now?

Figure 2: Not so good

Refactor time!

Figure 3: Better

Further refactoring time!

Figure 4: Even better

Controller v7 : Restore sanity

getOrders(request, response, ctxt) => {
let orders = ctx.database.findAll('order',

ctxt.queryService.filtersFor(
request

)
);
response.status = 200;
response.body = orders;
return [request, response];

}

Deployment

Trends

Then Now

Manage it separately

Figure 5: Separate process

.. separately, as a sidecar

Before After

.. as a shared resource

Figure 6: Shared resource

.. shared resource, as a service

Before After

.. as a shared central resource

Figure 7: Centralized shared resource

Oooops

Figure 8: This is not fine

Policy Management

Policy control

Policy control

Policy control

Policy control

Policy control

Policy control

Open Policy Agent

Open Policy Agent

Figure 9: Viking helm OPA logo

Example AD/JWT flow

Figure 10: Best practice, Identity and JWT

Data flow

Figure 11: Components

Dynamic policy deployment

Figure 12: Centralized management, distributed enforcement

Rego policies

Rego language

Rego was inspired by Datalog, which is a well understood, decades old query
language. Rego extends Datalog to support structured document models such
as JSON.
Rego queries are assertions on data stored in OPA. These queries can be used
to define policies that enumerate instances of data that violate the expected
state of the system.

Rego Variable Keys

References can include variables as keys. References written this way are used
to select a value from every element in a collection.

rego
sites := [

{"name": "prod"},
{"name": "smoke1"},
{"name": "dev"}

]

q[v1] { v1 := sites[v2].name }

q == ["prod", "smoke1", "dev"]

javascript
const sites = [

{"name": "prod"},
{"name": "smoke1"},
{"name": "dev"},

];

const q = sites.map(s=> s["name"]);

// q == ["prod", "smoke1", "dev"]

Rego Variable Keys

rego REPL
> sites[i].servers[j].host
+---+---+-------------------------+
| i | j | sites[i].servers[j].host|
+---+---+-------------------------+
| 0 | 0 | "hydrogen" |
| 0 | 1 | "helium" |
| 0 | 2 | "lithium" |
| 1 | 0 | "beryllium" |
| 1 | 1 | "boron" |
| 1 | 2 | "carbon" |
| 2 | 0 | "nitrogen" |
| 2 | 1 | "oxygen" |
+---+---+-------------------------+

python
def hosts(sites):

result = []
for site in sites:

for server in site.servers:
result.append(server.host)

return result

Rego Packages
package my.scratchpad
servers = [

{"name": "smoke1", "protocol": "http"},
{"name": "smoke2", "protocol": "gopher"}

]

$ curl http://localhost/v1/data/my/scratchpad/servers

package my.testpad
import data.my.scratchpad.servers
http_servers[server] {

server := servers[_]
server.protocols[_] == "http"

}
http_servers == [
{"name": "smoke1", "protocol": "http"}
]

Logical data model
Policy (rego)
package opa.examples
import data.servers
import data.networks
import data.ports

violations[server] {
server := servers[_]
server.protocols[_] == "http"
public_servers[server]

}
public_servers[server] {

server := servers[_]
server.ports[_] == ports[i].id
networks[j].public == true

}

Model

Example HTTP API policy
package acmecorp.authz
default allow = false

Allow people to read their own salaries.
allow {

input.method = "GET"
input.path = ["salaries", employee_id]
input.user = employee_id

}

Also allow managers to read the salaries of people they manage.
allow {

input.method = "GET"
input.path = ["salaries", employee_id]
input.user = data.manager_of[employee_id]

}

SSH access

Figure 13: SSH

Example sshd/sudo policy

package ssh.fine_grained

Allow "dev" users access if they possess a certificate proving
they are assigned to an application running on the host.
allow {

certs := crypto.x509.parse_certificates(input.certificates)

certs[i].Subject.Organization[j] == data.host_info.apps[_]
certs[i].Subject.OrganizationalUnit[j] == "dev"

time.now_ns() >= certs[i].NotBefore
time.now_ns() <= certs[i].NotAfter

}

Policy testing

Policy
package authz

allow {
input.path == ["users"]
input.method == "POST"

}

allow {
input.path = ["users", user_id]
input.method == "GET"
user_id == input.user_id

}

Tests
package authz
test_post_allowed {
allow with input as {
"path": ["users"],
"method": "POST"

}}

test_get_anonymous_denied {
not allow with input as {
"path": ["users"],
"method": "GET"

}}

Testing - Data mocking

Policy
package authz

allow {
x := data.policies[_]
x.name == "test"
matches_role(input.role)

}

matches_role(role) {
data.roles[role][_] == input.user

}

Tests
package authz

policies = [{"name": "test"}]
roles = {"admin": ["alice"]}

test_allow_with_data {
allow with input as {
"user": "alice",
"role": "admin"

}
with data.policies as policies
with data.roles as roles

}

Testing

$ opa test -v example.rego example_test.rego
data.authz.test_post_allowed: PASS (1.85µs)
data.authz.test_get_anonymous_denied: PASS (929ns)

PASS: 2/2
$ echo $?
0

Open Policy Agent - Query API

Policy checks for a GET-Object request

Figure 14: Request flow

API Policy - GET /orders - Route authorization

Policy (rego)
default deny
allow {
input.method = "GET"
input.path = ["orders"]

}

Request
{
"method": "GET",
"path": ["orders"]

}
Response
{
"result" : {
"allowed": true

}
}

Open Policy Agent - Compile API

Partial Evaluation (SQL)

Figure 15: Add SQL WHERE clauses

Partial evaluation

Figure 16: Partial evaluation to generate WHERE clauses

Example of data filtering

package example

allow {
input.subject.clearance_level >= data.reports[_].clearance_level

}

allow {
data.break_glass = true

}

Data filtering / compile query

POST /v1/compile
{

"query": "data.example.allow == true",
"input": {

"subject": {
"clearance_level": 4

}
},
"unknowns": [

"data.reports"
]

}

Scenario : Users and Admins accessing Orders

Scenario Users and Admins

Figure 17: Everyone on the same interface

Scenario Users and Admins

Figure 18: Multiple instances, different policies

Scenario Users and Admins

Figure 19: Scaling up instances, policies

Decision Log
[{

"labels": {
"app": "finance-app",
"id": "1780d507-aea2-45cc-ae50-fa153c8e4a5a"

},
"decision_id": "4ca636c1-55e4-417a-b1d8-4aceb67960d1",
"revision": "W3sibCI6InN5cy9jYXRhbG9nIiwicyI6NDA3MX1d",
"path": "http/example/authz/allow",
"input": {

"method": "GET",
"path": "/salary/bob"

},
"result": "true",
"requested_by": "[::1]:59943",
"timestamp": "2018-01-01T00:00:00.000000Z"

}]

Further deployment options

Figure 20: What we have now

Further deployment options

Figure 21: Embedded golang library

Further deployment options

Figure 22: WASM + node

Further deployment options

Figure 23: WASM + WASI

Summary

Figure 24: OPA makes the sun shine, the birds sing and the grass green

Links

I openpolicyagent.org
I actix-web OPA Middleware

https://openpolicyagent.org/
https://github.com/michiel/actix-web-middleware-opa

	Let's build an API
	Requirement 1 : Orders are accessible via an API
	Requirement 16 : A valid session is required to access the API
	Requirement 31 : Only premium users can access Orders
	Deployment
	Policy Management
	Open Policy Agent
	Rego policies
	Open Policy Agent - Query API
	Open Policy Agent - Compile API
	Scenario : Users and Admins accessing Orders

