
Distributed Systems Tracing

Michiel Kalkman



Reference system

Figure 1: Reference system



Tracing

A trace is a representation of a series of causally related
distributed events that encode the end-to-end request flow
through a distributed system.

Source

https://www.oreilly.com/library/view/distributed-systems-observability/9781492033431/ch04.html


Pillars of Observability

Logs Metrics Tracing

Accounting X X
Reporting X X
Alerting X X
Testing X X X
Diagnostics X X X
Verification X X
Auditing X



Observability flow

Figure 2: Each component in a solution generates visibility data



Observability flow - Tracing

Figure 3: Position of tracing



Logging does not provide Tracing



Log stream

Time App Content

15:00.01 App 1 Received request
15:00.01 App 1 Call App 2
15:00.01 App 1 Call App 3
15:00.02 App 3 Received request
15:00.02 App 3 Processing request
15:00.02 App 2 Received request
15:00.03 App 3 Respond to App 1
15:00.03 App 2 Processing request
15:00.04 App 2 Respond to App 1
15:00.05 App 1 Process responses
15:00.06 App 1 Respond to caller



Log stream by application

Time App 1 App 2 App 3

15:00.01 Received
15:00.01 Call(App2)
15:00.01 Call(App3)
15:00.02 Received Received
15:00.02 Processing
15:00.03 Processing Response(App1)
15:00.04 Response(App1)
15:00.05 Processing Response(App1)
15:00.06 Respond(Caller)



Log issues

I Reliance on timestamps from system clocks
I Insufficient granularity
I Synchronization is unreliable
I No happens-before semantics

I Loss of order/sequence, events can be received out-of-order
I Loss of causality, events are unrelated to each other
I Lack of consistent representation, event content is unstructured
I Lack of availability, no garuantee that logging is implemented



Tracing requirements



Uses

Traces are used to identify the amount of work done at
each layer while preserving causality by using
happens-before semantics.

Source

https://www.oreilly.com/library/view/distributed-systems-observability/9781492033431/ch04.html


Event causality

Figure 4: Events as a directed graph, showing causal relations



Event causality over time

Figure 5: Events as a flame chart



Verification

I Does each microservice call the policy agent for all incoming
requests?

I Does each incoming HTTP request trigger the creation of an
audit log?

I Is the cache hit rate for service X within expected range?



Accounting and Reporting



Record

Example for collector storage (sqlite3) - implementations will differ

CREATE TABLE traces (
unique_id STRING, /* id: unique */
service_id STRING, /* id: service */
function_id STRING, /* id: service function */
client_id STRING, /* id: user, system */
starttime INTEGER, /* timestamp */
endtime INTEGER, /* timestamp */
duration INTEGER, /* ms - total time */
cpu INTEGER, /* ms - processing state */
io INTEGER, /* ms - processing state */
wait INTEGER, /* ms - processing state */
details BLOB /* trace-specific data */

);

http://sqlite.org/


Reporting- Utilization

SELECT service_id, function_id, sum(cpu), sum(io),
sum(wait), sum(duration) as total
FROM traces
GROUP BY function_id
ORDER BY total DESC;

Service Function cpu io wait total

preferences get 6084 6747 8262 21093
preferences update 4965 4261 4841 14067
shopping_cart add_item 3844 4523 4608 12975
user_management get_user 4181 3820 3493 11494
user_management list_users 3090 3290 2772 9152
user_management update_user 2065 2893 2766 7724
shopping_cart list_items 2538 2739 2403 7680
shopping_cart remove_item 1948 2169 1720 5837



Reporting - SLA
SELECT service_id, function_id,

COUNT(unique_id) as breaches
FROM traces
WHERE duration > 500
GROUP BY service_id, function_id
ORDER BY breaches;

Service Function Number of breaches

preferences get 24
preferences update 18
shopping_cart add_item 17
user_management get_user 16
user_management update_user 10
user_management list_users 9
shopping_cart remove_item 8
shopping_cart list_items 7



Reporting - Affected users

SELECT client_id,
COUNT(unique_id) AS breaches
SUM(duration) as total, AVG(duration),
FROM traces
WHERE duration > 500
GROUP BY client_id
ORDER BY breaches DESC;

Client Breaches Total time Avg time

john 32 22887 715
jack 28 18069 645
joe 25 17175 687
jill 24 15990 666



Reporting - Advantages

I Tracing data is consistent across protocols
I No intermediate extraction step (i.e. from log events)
I Can be implemented for any protocol (RPC, MQ, custom, etc)

I Tracing data represents actual client experience
I Can be extended to include the actual client in the trace

I Tracing data contains trace-specific details
I Immediate answer to ’why is this trace slow?



OpenTracing



Single standard + implementation

Figure 6: Visibility across application boundaries



Multiple standards + implementations

Figure 7: Incompatible tracing standards



Incompatibility

Figure 8: No visibility across platform boundaries



Vendor-neutral standard + multiple implementations

Figure 9: Visibility across platform boundaries



Background

OpenTracing is,
I an API specification, not a standard or an implementation
I vendor-neutral and a project under the CNCF
I inspired by Google Dapper paper

https://opentracing.io
https://cncf.io
https://ai.google/research/pubs/pub36356


OpenTracing nouns

I Trace : The description of a transaction as it moves through a
distributed system.

I Span : A named, timed operation representing a piece of the
workflow. Contains key/value pairs and logs

I Span context : Trace information that accompanies the
distributed transaction. Contains trace ID and span ID



Spans

Each Span has,
I An operation name
I Start and finish timestamps
I A Span context containing

I Baggage Items : key:value pairs that cross process boundaries
I Implementation-dependent state needed to refer to a span

across a process boundary



HTTP Trace-Context headers

These fields are being standardized

field format description

trace-id 128-bit; 32HEXDIG ID of entire trace
span-id 64-bit; 16HEXDIG ID of caller span (parent)



HTTP B3 headers

These fields are used by Zipkin-derived systems

field format description

X-B3-TraceId 64, 128-bit ID of trace, every span shares this
ID

X-B3-SpanId 64-bit Position of current operation in
trace tree. May be derived from
TraceId



Header propagation

Generic requirements
I Incoming request handling

I Generating new spanId

I Session or context handling (storing the trace information)
I Outgoing request handling

I Passing tracing information via metadata, headers, etc

I Incoming response handling
I Outgoing response handling


	Logging does not provide Tracing
	Tracing requirements
	Accounting and Reporting
	OpenTracing

