
Modeling co-tenant risk for cloud services
(ISC)2 Melbourne Chapter Meeting - 14/07/2021

Michiel Kalkman DigIO / Mantel Group

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 1 / 48

Some background

Figure 1: It’s turtles all the way down1

1https://openclipart.org/detail/254346/pyramid-of-turtle
Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 2 / 48

The plan

Remain vendor-neutral
Find the right levels of abstraction
Have a grounding in technical reality
Be comprehensible to non-technical stakeholders
Have a low barrier to entry
Be portable
Be repeatable

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 3 / 48

Section 1

Communication

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 4 / 48

Actors and actions

Three actors
Tenant (Us)
Co-Tenant (Them)
Provider

Flow of control
Transition of the ability to execute instructions on the shared infrastructure

Containment
Controls placed on an actor to prevent policy violations

Isolation
Degree to which one actor is unaffected by the actions of another

Exposure
Degree to which one actor is affected by the actions of another

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 5 / 48

Actor colours

Tenant

Co-Tenant

Provider

Figure 2: Colour coding

Colours
Areas under tenant control are blue (us)
Areas under co-tenant control are red
(untrusted)
Areas under provider control are green
(trusted)

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 6 / 48

Actor relationships

Tenant Provider

Figure 3: Connections

Connections
Connection lines represent flow of
control
Dashed or dotted lines are gated - these
have restrictions (preventative controls)
on them.
Solid lines are ungated - these have no
restrictions. Some have audit points that
can be used to create detective controls

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 7 / 48

Area boundaries

Outside

Inside

Provider Tenant

Figure 4: Boundaries

Boundaries
Boundaries are containing boxes
Boxes are nestable
Outside area contains all boxes within it

Outer boxes have more privileges
Inner boxes have fewer privileges

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 8 / 48

Actor boundaries
Outside

Inside

Provider
«Bounded»
Tenant

«Bounded»
Co-Tenant

Figure 5: Boundaries

Boundaries
Actors with a red border have
restrictions within the boundary

These are also explicity marked as
<<Bounded>>

Actors without a red border have
unrestricted access within the boundary

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 9 / 48

Section 2

Model scenarios

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 10 / 48

Single mode CPU
CPU

Kernel

Application

Application

Figure 6: Privilege model - Single mode CPU

Application Application

Kernel

Figure 7: Execution flow - Single mode CPU

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 11 / 48

Privilege model Intel IA32/64 - multi-mode CPU
CPU

Kernel mode (Ring 0)

User mode (Ring 3)

Kernel
«Bounded»
Application

«Bounded»
Application

Figure 8: Intel x86 modes (rings)

User mode restrictions
Cannot run privileged instructions
Cannot write to all registers
Cannot modify current segment register
(i.e. change rings)
Cannot modify page tables
Cannot modify CR3 register, this
prevents seeing other processes’ memory
Cannot register interrupt handlers
Cannot use IO instructions (e.g. in, out)

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 12 / 48

Execution flow Intel IA32/64

Hardware boot

Kernel

Application Application

Figure 9: Intel x86 kernel/application flow

Modes are used to isolate processes from each other, the kernel and, by implication, system
resources. Only kernel code can, for example, execute IO instructions.

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 13 / 48

Virtualization - Definition
Virtualization constructs isomorphism
from guest to host, by implementing
functions V() and E()
All guest state S is mapped onto host
state S’ through a function V(S)
For every state change operation E(S) in
the guest is a corresponding state change
E’(S’) in the host

Si

Sj

E(Si)

Si'

V(Si)

Sj'

V(Sj) E'(Si')

Figure 10: Popek and Goldberg (PG74)

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 14 / 48

Virtualization - Privilege model Intel IA32/64
CPU

Kernel mode / Root

User mode / Root

VM Context 1 - Kernel / Non-root

User mode / Non-root

VM Context 2 - Kernel / Non-root

User mode / Non-root

HypervisorHost Kernel Virtual Machine 1Virtual Machine 2

Guest Kernel 1

«Bounded»
App

«Bounded»
App

Guest Kernel 2

«Bounded»
App

«Bounded»
App

Figure 11: IA32/64 zones (Provider hosts VMs)

Root and Non-root mode
Virtual environments contained in VM
contexts
Virtual environments operate in
non-root mode
Only root mode has access to VMX
instructions
Hypervisor (or VM Monitor) creates and
runs VMs
Computer on which hypervisor runs is
called Host
Computer on which VM runs is called
Guest

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 15 / 48

Virtualization - Execution flow Intel IA32/64

Hardware boot

Host kernel

Hypervisor

VM 1

VM 2

Guest kernel

Guest kernel

App

App

App

App

Figure 12: IA32/64 flow (Provider hosts VMs)

Notes
Connection between Guest Kernel and
VM is mediated by Hypervisor

Relevant instructions are trapped by
Hypervisor and control is then passed
to VM
This is a pass-through mechanism,
modeling it as a direct connection
makes is easier to reason about the
attack surface

All gated connections have boundaries
enforced via CPU mechanisms

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 16 / 48

Model and flow - Provider hosts VMs
CPU

Kernel mode / Root

User mode / Root

VM Context 1 - Kernel / Non-root

User mode / Non-root

VM Context 2 - Kernel / Non-root

User mode / Non-root

HypervisorHost Kernel Virtual Machine 1Virtual Machine 2

Guest Kernel 1

«Bounded»
App

«Bounded»
App

Guest Kernel 2

«Bounded»
App

«Bounded»
App

Figure 13: Zones

Hardware boot

Host kernel

Hypervisor

VM 1

VM 2

Guest kernel

Guest kernel

App

App

App

App

Figure 14: Flow

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 17 / 48

Model and flow - Provider hosts applications
CPU

Kernel mode / Root

User mode / Root

VM Context 1 - Kernel / Non-root

User mode / Non-root

VM Context 2 - Kernel / Non-root

User mode / Non-root

HypervisorHost Kernel Virtual Machine 1Virtual Machine 2

Guest Kernel 1

«Bounded»
App

«Bounded»
App

Guest Kernel 2

«Bounded»
App

«Bounded»
App

Figure 15: Zones

Hardware boot

Host kernel

Hypervisor

VM 1

VM 2

Guest kernel

Guest kernel App

App

App

App

Figure 16: Flow

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 18 / 48

Model and flow - Provider hosts nested VMs
CPU

Kernel mode / Root

User mode / Root

1-deep : VM Context 1 - Kernel / root (simulated)

User mode / root

2-deep : VM Context 1 - Kernel / non-root

User mode / non-root

2-deep : VM Context 2 - Kernel / root (simulated)

User mode / root

2-deep : VM Context 2 - Kernel / non-root

User mode / non-root

HypervisorHost Kernel Virtual Machine 1Virtual Machine 2

Hypervisor

Host Kernel 1

«Bounded»
Virtual Machine

Guest Kernel

«Bounded»
App

«Bounded»
App

Hypervisor

Host Kernel

«Bounded»
Virtual Machine

Guest Kernel

«Bounded»
App

«Bounded»
App

Figure 17: Zones

Hardware boot

Host kernel

Hypervisor

VM 1

VM 2

1-deep host kernel

1-deep host kernel

Hypervisor

Guest kernel

VM

App

App

Hypervisor

Guest kernel

VM

App

App

Figure 18: Flow

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 19 / 48

Gate types

Higher privilege Lower Privilege Gate type

Kernel / root User / root System call
Kernel / root Kernel / non-root Virtualization trap
Kernel / non-root User / non-root System call
Kernel / non-root User / root Virtualization trap (via VMM)

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 20 / 48

The kernel / user boundary

SYSRET SYSCALL

Kernel

User

Figure 19: Kernel/User control flow

Enter Ring 3
sysret, sysenter, iret

Exit Ring 3
syscall, sysenter
Software interrupt (Linux 0x80)
Trap
Far call

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 21 / 48

The host / guest boundary

VMON

VMENTER VMEXIT

VMOFFHost

Guest

Figure 20: Host/Guest control flow

VMEXIT scenarios
Any guest instruction that causes an
exception
An external I/O interrupt
Root-mode sensitive x86 privileged or
sensitive instructions (e.g. hlt, pause)
Hypercalls - vmcall - Explicit transition
from non-root to root
VT-x ISA extensions to control non-root
execution (e.g. vmclear, vmlaunch)

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 22 / 48

Section 3

Qualify scenarios

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 23 / 48

Combined controls User/Kernel

Application

SYSCALL

SECCOMP-BPF
LSM
Extensions

Function

Capability

Ownershipnamespace Resource

User/Kernel boundary

Security Control
Filter allowed syscalls
Reduce attack surface

Security Control
Filter syscall parameters
Reduce attack surface
SELinux, AppArmor, etc

Security Bypass
Capabilities are root privileges

Security Control
Reduce attack surface

Security Control
Permission

Figure 21: Security controls on the User/Kernel boundary

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 24 / 48

Attack Model - User to Kernel
Setup attack

Invoke system call

Audit point

SECCOMP Blocked?
Yes No

Safe

Audit point

LSM Blocked?
Yes No

Safe

Audit point

Invoke function

Function is vulnerable?
Yes

Compromise Kernel

Audit trail loss

Access Resource

Resource is hidden?
Yes No

Safe

Audit point

Has Capability?
Yes No

Compromise Resource

Audit point

Ownership setup correctly?
Yes No

Safe

Audit point

Compromise Resource

Audit point

Figure 22: User/Kernel controls

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 25 / 48

Section 4

Quantify scenarios

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 26 / 48

Quantifying boundary isolation

Score the boundary on a scale from 0 to 100
0 is completely exposed
100 is completely isolated
List all controls
Select a maximum number for all controls activated

Distribute over available controls
Leave the remainder as residual risk

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 27 / 48

Residual Risk Example : POP SS / MOV SS vulnerability

CVE-2018-8897

If the instruction following the MOV to SS or POP to SS instruction is an instruction
like SYSCALL, SYSENTER, INT 3, etc. that transfers control to the operating system
at CPL < 3, the debug exception is delivered after the transfer to CPL < 3 is complete.
OS kernels may not expect this order of events and may therefore experience unexpected
behavior when it occurs. 2

Rough translation

A handler set in Ring 3 can be called while still in Ring 0

2https://nvd.nist.gov/vuln/detail/CVE-2018-8897
Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 28 / 48

https://nvd.nist.gov/vuln/detail/CVE-2018-8897

Containing Userspace processes (Linux)
Max isolation with full controls 75
Minimum exposure of 25

Breakdown (example scoring for
demonstration purposes),

Aspect Rating

SECCOMP +30
LSM +25
Permissions +10
Namespaces +10
Capabilities -60

Tenant

Provider

70
Co-tenant

10
0

0

Figure 23: Note this relationship is asymmetric

SYSCALL controls Tenant Co-tenant

SECCOMP +30 +30
LSM +25 +25
ACL/Permissions +15 +15
Namespaces
Capabilities -60
Score 70 10

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 29 / 48

Containment model hosted virtual machines

Tenant / non-root

Hypervisor / root

85

0

Co-Tenant / non-root

0

85

Figure 24: Simplified (VM+VMM as single unit)

Threat origin Path

Host peer [85, 0]

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 30 / 48

Residual Risk Example : VENOM

CVE-2015-3456

The Floppy Disk Controller (FDC) in QEMU, as used in Xen 4.5.x and earlier and
KVM, allows local guest users to cause a denial of service (out-of-bounds write and
guest crash) or possibly execute arbitrary code via the (1) FD_CMD_READ_ID, (2)
FD_CMD_DRIVE_SPECIFICATION_COMMAND, or other unspecified commands,
aka VENOM. 3

Rough translation

Back in 2004 Floppy Disks were still a thing and a driver was added to QEMU. No-one has
looked at it since, QEMU is used in various VMMs, it contains the driver and that is vulnerable
to a buffer overflow.

3https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3456
Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 31 / 48

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-3456

Containment model hosted applications/functions

Tenant

Kernel

75

Guest peer

150 0

Hypervisor / root

85
0

Kernel

0
85

Host peer

0
15

Figure 25: Simplified (VM+VMM as single unit)

Threat origin Path

Guest peer [15, 0]
Host peer [15, 85, 0, 0]

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 32 / 48

Containment model JVM

Tenant
JVM

15

0

JVM peer

0

Kernel
(Guest)

75

JVM

Guest peer

0

75

JVM

Kernel
(Guest)

75

Host peer0

15

15

0

0

Kernel/VMM
(Host)

85
0

0
0

85

15

Figure 26: As a weighted, directed graph

Threat origin Path

JVM peer [15, 0]
Guest peer [15, 75, 0, 0]
Host peer [15, 75, 85, 0, 0, 0]

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 33 / 48

Exposure analysis

Calculation
function Exposure(arr) {

return (arr.reduce((b, a)=> {
return (1 - (a/100)) * b;

}, 1) * 100).toFixed(2);
}

Threat origin Path Exposure()

JVM peer [15, 0] 85.00
Guest peer [15, 75, 0, 0] 21.25
Host peer [15, 75, 85, 0, 0, 0] 3.19

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 34 / 48

Example - Kubernetes

Figure 27: Kubernetes components4

4https://kubernetes.io/docs/concepts/overview/components/
Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 35 / 48

https://kubernetes.io/docs/concepts/overview/components/

Example - Managed Kubernetes

Hardware boot

Host kernel

Hypervisor

0

VM 1

0

VM 2
0

Guest kernel

0

Guest kernel

0

0

0

0

75

0

75

0

90

90

75

k-proxy
0

Pod

0

Pod

0

90

90

70

k-proxy

0

Pod

0

Pod

0

55

55

55
55

55

55

Figure 28: Separate nodes for tenants

Threat origin Path Exposure

Host peer [55,90,0,0] 4.50
Host peer [55,75,75,0,0] 2.81

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 36 / 48

Example - Kubernetes - Shared tenancy

Hardware boot

Host kernel

Hypervisor

0

VM 1
0

VM 2

0
Guest kernel

0

Guest kernel

0

0

0

0

75

0

75

0

90

90

75

k-proxy

0

Pod

0

Pod

0

90

90

70

k-proxy0

Pod

0

Pod

0

55

55

55

55

55

55

Figure 29: Shared nodes, separate k8s namespaces
for tenants

Threat origin Path Exposure

Guest peer [55] 45.00
Host peer [55,90,0,0] 4.50
Host peer [55,75,75,0,0] 2.81

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 37 / 48

Example - Firecracker

Figure 30: Firecracker components5

5https://firecracker-microvm.github.io/
Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 38 / 48

https://firecracker-microvm.github.io/

Example - Firecracker model

EC2 Nitro

Host (linux)

KVM

0

firecracker-vm

0

firecracker-vm

0

Guest (linux)

0

Guest (linux)

0

0

0

0

75

0

75

0

90

90

75

Function

0

90

90

70

Function

0

55

55

Figure 31: Separate nodes for tenants

Threat origin Path Exposure

Host peer [55,95,0,0] 4.50
Host peer [55,75,75,0,0] 2.81

Kernel/User controls on Function
Minimal VM implementation in Rust
Hardened KVM
Hardened, minimal OS for Guest and
Host

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 39 / 48

Section 5

Side channels

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 40 / 48

L1TF - L1 Terminal Fault

L1 Terminal Fault is a hardware vulnerability which allows unprivileged speculative
access to data which is available in the Level 1 Data Cache [..]

L1TF allows to attack any physical memory address in the system and the attack
works across all protection domains.

The fact that L1TF breaks all domain protections allows malicious guest OSes, which
can control the PTEs directly, and malicious guest user space applications, which run
on an unprotected guest kernel lacking the PTE inversion mitigation for L1TF, to
attack physical host memory. 6

6https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html
Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 41 / 48

https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html

L1TF Containment model

Us / non-root/user

Kernel / Protected

75

Guest peer15

0

0

VMM / root/system

85
0

Kernel / Protected

0

Kernel / Unprotected

0

85

Host peer A

0
15

60

85

Host peer B

0

60

15

Figure 32: As a weighted, directed graph

Threat origin Path

Guest peer [15, 0]
Host peer A [15, 85, 0, 0]
Host peer B [15, 85, 0, 0]
Host peer B [60]

Threat origin Exposure

Guest peer 85.00
Host peer A 12.75
Host peer B 12.75
Host peer B 40.00
B combined 47.65

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 42 / 48

Section 6

Further exploration

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 43 / 48

Sample vendor technology

Vendor Host kernel Hypervisor Virtual Machine

GCP7 Linux KVM variant (custom) In house
Azure8 Windows Hyper-V / Azure-V ?
AWS9 Linux KVM Firecracker-VM
DO10 Linux KVM QEMU

77 ways we harden our KVM hypervisor at Google Cloud
8Hypervisor security on the Azure fleet
9Firecracker – Lightweight Virtualization for Serverless Computing

10Open Source at DigitalOcean: Introducing go-qemu and go-libvirt
Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 44 / 48

https://cloud.google.com/blog/products/gcp/7-ways-we-harden-our-kvm-hypervisor-at-google-cloud-security-in-plaintext
https://docs.microsoft.com/en-us/azure/security/fundamentals/hypervisor
https://aws.amazon.com/blogs/aws/firecracker-lightweight-virtualization-for-serverless-computing/
https://www.digitalocean.com/blog/introducing-go-qemu-and-go-libvirt

Blast radius

Tenant

Runtime

Tenant

Tenant

Tenant

Tenant

Runtime

Tenant

Tenant

Tenant

Tenant

Runtime

Tenant

Tenant

Tenant
Tenant

Runtime

Tenant
Tenant

Tenant

Guest

Guest

Host

Figure 33: Compromise at depth=1

Tenant

Runtime

Tenant

Tenant

Tenant

Tenant

Runtime

Tenant

Tenant

Tenant

Tenant

Runtime

Tenant

Tenant

Tenant
Tenant

Runtime

Tenant
Tenant

Tenant

Guest

Guest

Host

Figure 34: Blast radius, compromise depth=1

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 45 / 48

Co-instantiation

Density
Tenants / host

Utilisation
Total Capacity
Tenant Occupancy

Distribution
Allocation algorithm
Tenant Proximity

Emphemerality
Maximum lifespan
Average lifespan

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 46 / 48

Thanks everyone!

Contact - Michiel Kalkman
https://michielkalkman.com/
https://au.linkedin.com/in/kalkmanmichiel

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 47 / 48

https://michielkalkman.com/
https://au.linkedin.com/in/kalkmanmichiel

Attribution-NonCommercial 4.0 International (CC BY-NC 4.0)

You are free to:

Share — copy and redistribute the material in any medium or format
Adapt — remix, transform, and build upon the material

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

Attribution — You must give appropriate credit, provide a link to the license, and indicate
if changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

NonCommercial — You may not use the material for commercial purposes.

https://creativecommons.org/licenses/by-nc/4.0/

Michiel Kalkman, DigIO / Mantel Group Modeling co-tenant risk for cloud services 48 / 48

https://creativecommons.org/licenses/by-nc/4.0/

	Communication
	Model scenarios
	Qualify scenarios
	Quantify scenarios
	Side channels
	Further exploration

